Problem Statement :

This dataset is originally from the National Institute of Diabetes and Digestive and Kidney Diseases. The objective of the dataset is to diagnostically predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Several constraints were placed on the selection of these instances from a larger database. In particular, all patients here are females at least 21 years old of Pima Indian heritage.

Explaination:
The following features have been provided to help us predict whether a person is diabetic or not:
· Pregnancies: Number of times pregnant
· Glucose: Plasma glucose concentration over 2 hours in an oral glucose tolerance test
· BloodPressure: Diastolic blood pressure (mm Hg)
· SkinThickness: Triceps skin fold thickness (mm)
· Insulin: 2-Hour serum insulin (mu U/ml)
· BMI: Body mass index (weight in kg/(height in m)2)
· Diabetes Pedigree Function: Diabetes pedigree function (a function which scores likelihood of diabetes based on family history)
· Age: Age (years)
· Outcome: 0 if non-diabetic, 1 if diabetic

IDE: Google Colab
Packages used:
1. Pandas
2. Numpy
3. Scikit-learn
Libraries used:
1. From sklearn.model_selection: train_test_split
2. From sklearn.preprocessing: StandartScaler
3. From sklearn.neighbors: KNeighborsClassifier
4. From sklearn.metrics: confusion_matrix
5. From sklearn.metrics: accuracy_score
6. math
Solution:
1. We imported basic libraries: Pandas and Numpy
2. Using pandas we opened our dataset and initialised to variable df.
3. While exploring data we found out that many columns contained zero entries such as glucose, insulin, bmi, bloodpressure, skin thickness etc. Zero values of these features is not possible hence we had to first change these zero entries to null values(np.NaN) and then these null values to mean.
4. We then divided our data in training data and testing data using train_test_split library. Test split = 0.2 which means we have split 20% of our data for testing the model and the rest 80% to train our model.
5. Next we scaled the input using StandardScaler library because we need to fit in the data in standard scale(between -1 and 1). Only the input has to be transformed(test_x and train_x).
6. Before starting knn classification we need to find out n_neighbors(k) value. We found that using math.sqrt() as 12.409, however, n_neighbors must contain odd value hence we can say k=12.409 11
7. We then applied KNeighborsClassifier library with n_neighbors = 11, p=2(since outcome is 1-diabetic or 0-nondiabetic), metric = Euclidean.
8. We then predicted and printed our predicted data.
9. To evaluate the efficiency of our model we used confusion matrix library and accuracy score library.
10. Confusion matrix value = and accuracy score = 0.805. Hence accuracy = 80.5%

Code(Screenshots):
[image:]
[image:]
[image:]
[image:]
[image:]

Conclusion:
Using correlation method we can see that glucose levels, age, BMI and number of pregnancies all have significant correlation with the outcome variable.
Blood pressure has a negative influence on the prediction, i.e. higher blood pressure is correlated with a person not being diabetic.

[image:]

Looking at the confusion matrix we can say that:
· True positive = 95 diabetic patients were correctly classified by the model.
· True Negative = 29 non diabetic patients were correctly classified by the model.
· False Positive = 12 non-diabetic patients were incorrectly classified as diabetic patients by the model.
· False Negative = 18 diabetic patients were incorrectly classified non-diabetic patients by the model.

The accuracy score of the model is 0.805 hence the accuracy of the model is 80.5% which is pretty decent.

image6.png
A Minor Project.ipynb ¢

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

© corr = df.corr()

Q print(corr)

< [Pregnancies Glucose BloodPressure SkinThickness \
Pregnancies 1.000000 ©.127957 ©.208615 ©.081770
Glucose 0.127957 1.000000 ©.218615 0.192677

[m} BloodPressure ©.208615 ©.218615 1.000000 ©.191892
SkinThickness ©.081770 ©.192677 ©.191892 1.000000
Insulin ©.955478 ©.420301 ©.072041 ©.158133
BMI ©.021546 ©.231470 ©.281132 ©.543275
DiabetesPedigreeFunction -.833523 ©.137100 -8.002378 0.102188
Age ©6.544341 ©.266591 0.324915 0.126107
outcone ©0.221898 ©.492911 0.165723 0.214873

Insulin BMI DiabetesPedigreeFunction \

Pregnancies 0.055478 ©.021546 -0.033523
Glucose 6.420301 0.231470 0.137108
BloodPressure ©.972041 ©.281132 -8.002378
SkinThickness ©.158133 ©.543275 ©.102188
Insulin 1.000000 ©.166946 ©.09917@
BuT ©.166946 1.666600 ©.153566
DiabetesPedigreeFunction ©.099170 ©.153506 1.000000
Age ©.136050 0.625744 0.033561

=] Outcome 0.214278 ©.312249 ©.173844

-m Age Outcome
Pregnancies ©.544341 0.221898

 0s completed at 16:15 ® x

image1.png
 Minor Projectipynb 7

B comment &
File Edit View Insert Runtime Tools Help
+ Code + Text = Editng A

~ Import basic libraries.

<

PN -- X |
0 @ import pandas as pd
inport numpy as np

~ Read and display the given csv file.

[3] df = pd.read_csv("diabetes.csv")

41 df
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age Outcome
0 6 148 72 35 0 336 0627 50 1
= 1 1 85 66 29 0 266 0351 31 0
L] 2 8 183 64 0 0 233 0672 32 1

 0s completed at 16:15 ® x

image2.png
A Minor Project.ipynb ¢ B comment % shae 9
File Edit View Insert Runtime Tools Help All changes saved
+ Code + Text N e— - AEtng A
~ Replace zeroes with mean values.
Q
< [5] df1=["Glucose","BloodPressure”, “SkinThickness”, "Insulin”, "BMI"]
for column in dfl:
df[column] = df[column].replace(@,np.NaN)
(=) mean=int(df[column].mean(skipna=True))
df[column] = df[column].replace(np.NaN, mean)
~ Divide data into train and test.
[7] from sklearn.model_selection import train_test_split
[26] x = df.iloc[:,0:8]
y = df.iloc[:,8]
train_x, test_x, train_y, test_y = train_test_split(x, y, random_state=e, test_size=0.2)
~ Scale the input.
® X

 0s completed at 16:15

image3.png
 Minor Projectipynb 7
File Edit View Insert Runtime Tools Help All char

+ Code + Text

~ Scale the input.

<

[9] from sklearn.preprocessing import StandardScaler

[27] sc_x = Standardscaler()

train_x = sc_x.fit_transform(train_x)
test_x = sc_x.fit_transforn(test_x)

~ Find k.

import math
math.sqrt(len(test_x)) #v

k must be odd k=11

12.409673645990857

=
= ~ Apply KNN Classifier.

 0s completed at 16:15

B comment &
= Editing

rVveB /0T

N

image4.png
CO A Minor Project.ipynb ¢

Q

<

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

~ Apply KNN Classifier.

[12] from sklearn.neighbors import KNeighborsClassifier

[29] cls = KNeighborsClassifier(n_neighbors=11, p=2, metric="euclidean")
cls.fit(train_x, train_y)

KNeighborsClassifier(algorithm="auto’, leaf_size=38, metric='euclidean’,
metric_params=None, n_jobs=None, n_neighbors=11, p=2,
weights="uniform’)

~ Predict the result.

[36] pred_y = cls.predict(test_x)
pred_y

array([1,
o,
1

0,0, 0,00,
, 1, 9, 8, 0,
0, 0,0, 1

PR

©,0,1,0,01,1,0,0,1,1
©,0,0,01,0,0,1,0,0,1
©,0,0,0,0,1,0,1,0,0, 0,

sese
sppe
soo e
sroee

0s completed at 16:15

B comment

RAM

e Editing

r*veoeB/sE 0

N

image5.png
 Minor Projectipynb 7

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text

©,0,0,0,0,0,0,0,01,90,0,1,0,0,0,0,0,80,0,80,0])

Q
., ~ Evaluate the result.
=} [22] from sklearn.metrics import confusion_matrix
[31] cm = confusion_matrix(test_y, pred_y)
print(cm)
[[95 12]
[18 29]]
[24] from sklearn.metrics import accuracy_score
[32] print(accuracy_score(test_y, pred_y))
©.8051948051948052
=
=

 0s completed at 16:15

B comment

RAM

e Ediing A

* v o8B/ @

